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The present paper proposes a theory for the mechanical behaviour of a fluid with 
a rigid microstructure. The microstructure is described by a director frame of 
three vectors and a second-order tensor W and its gradient are proposed as 
measures of the kinematics of this frame. When the frame is spinning without 
deforming, W reduces to the director spin velocity. Postulating the existence of 
a couple stress in addition to the classical Cauchy stress, the linear constitutive 
equations for such a structured fluid are derived and then specialized to the case 
of transverse isotropy. 

These equations are used to study rectilinear shearing flow. When VW = 0 ,  the 
condition for a non-interacting substructure, the results of the theory are shown 
to be in agreement with the work of Jeffery and of Ericksen. For mutually inter- 
acting substructure particles, VW $. 0, a geometric analysis of the non-linear 
differential equations is performed in order to exhibit the effects of particle 
concentration on the flow kinematics. 

1. Introduction 
‘In both physical and biological science, we are often concerned with the 

properties of a fluid, or plasma, in which small particles or corpuscles are 
suspended and carried about by the motion of the fluid.’ This statement by 
G. B. Jeffery (1922) introduces his analysis of the modification produced in the 
motion of a viscous fluid by the presence of a single ellipsoidal particle. This 
analysis of the influence of a single particle can describe at  best a dilute suspension 
since particle interactions are ignored. Oseen (1933) reviewed the work of 
Anzelius (1931), who attempted to formulate the laws of motion for a liquid with 
oblong molecules. Anzelius postulated expressions for the dependence of stress 
and moment at each point of the fluid as a function of the classical kinematic rate 
of strain variable and of the orientation of the substructure particles. 

Ericksen ( 1960a, b) formalized Anzelius’s work and put it on a more rigorous 
foundation. Hand (1962) extended Erickson’s ideas to account for spherical 
particles which may deform into ellipsoids. Ericksen (1960b) points out that his 
equations governing the motion of a particle with a single preferred direction can 
be shown to be the same as the equations obtained by Jeffery (1922) for the 
motion of an oblate or prolate spheroid. The preferred direction concides with 
the axis of revolution of the ellipsoid. However, Ericksen’s equations do not 
account for rotation about this axis. Since in Jeffery’s work the particles are 
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treated as being infinitely far apart, his equations may be considered to be valid 
for a dilute or weak suspension of particles. Equivalently they may be regarded 
as those of a medium with non-interacting particles since the particles are so 
distant. By this convention, Ericksen’s equations may be classified as those 
governing a fluid with non-interacting substructure. 

Consider now the question of a non-dilute or concentrated suspension, i.e. one 
in which we may no longer ignore particle interactions. I n  a continuum theory, 
we regard each element of a material as possessing not only mass and velocity but 
also a substructure with which we associate a moment of inertia and a spin 
velocity. Then, at  each point of the continuum, we must have not only a force 
per unit area (Cauchy stress) but also a double force per unit area (Mindlin stress) 
which will exert twisting and bending moments on elemental volumcs. 

Similar ideas have been used in statistical treatments which complement the 
continuum approach, as in the work of Grad (1952), Dahler & Scriven (1963), arid 
Dahler (1965). In the above references, the idea of structured continua is 
developed in which couple stress (arising from double force with moment) is 
interpreted as a flux of spin momentum just as the Cauchy stress is interpreted 
as a flux of linear momentum. 

Recently Eringen & Suhubi (1964) and Eringen (1964) have developed thcories 
for ‘simple micro-elastic solids ’ and ’simple microfluids’, which take into account 
rigid rotation and deformation of the microstructure. These theories are an 
extension of the work of Mindlin (1964) which treated infinitesimal elastic 
deformations and introduced the general double stress tensor. The microfluid 
theory of Eringen seems to ignore the fact that a microstructure which is non- 
spherical or not randomly oriented will give rise to anisotropic effects. 

In this paper we develop a continuum theory which will describe the motion 
of a fluid having a rigid microstructure. The kinematics of such a structured 
continuum are treated and the constitutive equations for Cauchy and couple 
stress are formulated in terms of the kinematic variables and microstructure 
orientation. The proposed theory is valid for a fluid with interacting substructure. 
The theory is then spccialized to the case of rectilinear shearing motion of an 
incompressible structured fluid with a single preferred direction and the complete 
equations recorded. These equations are first solved for the case of negligible 
particle interaction in order to obtain a comparison with the results of previous 
theories, nnally, the equations are applied to examine the behaviour of a 
structured fluid with non-negligible particle interaction. 

2. Kinematics of structured continua 
I n  any treatment of a continuum with microstructure we must consider, to 

borrow the terminology of Dahler & Scriven (1963), both strain of position and 
strain of orientation. 

2.1. Strain of position 

Positional strain for a fluid is well known and will not be considered in detail. 
We simply recall that for a fluid one follows a line element dx as it moves with the 
fluid and observes the changes that take placc. We takc the convective derivative 
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of the line element and find that the velocity gradients are a measure of the rate of 
deformation 

(2.1) 

where the semicolon denotes the covariant derivative and only diagonally 
repeated indices are summed. 

d/dt (dz") = ~4~ d d ,  

2.2 .  Strain of orientation 
The concept of orientation strain in a solid was first considered by the Cosserats 
(1909) and later put on a rigorous basis by Ericksen & Truesdell (1958). We 
introduce a set of three vectors d, (a = 1,2 ,3)  a t  each point x of the fluid. These 
vectors may have a broad physical interpretation but we use them to represent 
the microstructure a t  each point of the fluid. Let da be tho reciprocals to d, 
such that a:a& = s:; a:a; = s;. (2.2) 

(2.3) 

We can define a generalized magnitude by 

D,, = d,.d, = D@, = (!2kd:).(gmdJ? = g?€,d:dp, 

where & are the base vectors of the general curvilinear co-ordinates defined in 
the instantaneous configuration of the continuum and where gk, = g k  . g, is the 
metric of the co-ordinate system. The quantities Dub describe instantaneously 
the magnitudes and angles between the triad of vectors d,. If D,, = 0 for cc + p, 
the triad is orthogonal; if DUB = ASafl the triad is orthogonal and the vectors are 
of equal length. 

We now consider the instantaneous rate of change of this generalizcd magni- 
tude while moving with the fluid particle to which the triad is attached. From (2.3) 

d/dt(D,p) = fi,, = g,,,(J$d,k+d2dy). 

d;,J,, + d; a,% = Dab a; ag. 

(2.4) 

If we multiply equation (2.4) by did:,, we obtain on using equation (2.2) 

(2.5) 

The solution of equation (2.5) for Dal is 

hap = 2Tq1,,)d,mdgn, (2.6) 

where IFnn = dkd,, and T i n z n )  = $(W,,+ Km). ( 2 . 7 )  

Now, from equation (2.3), the condition that the director frame does not 
deform is given by DUB = 0. From equation (2.6), it follows that the condition 

WCii) = 0 (2.8) 

is a necessary and sufficient requirement for the directors to be rigid. This condi- 
tion, how-ever,in noway limits rotations of the triad. For a rigid triad d, = 8 x d,, 
where 8 is the angular velocity of the frame. By using equation (2.2), and 
resolving W into it's components along the director frame, it follows that 
d, x d, = 2Q; or cquivalcntly, 

2ai = si ik  a; a,, = a;;. ~ l , ~ ] ,  (2.Y) 
61-2 
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where E is the absolute alternating tensor and the square brackets about two 
indices indicate antisymmetrization with respect to those indices. Prom equa- 
tions (2.7) and (2.8), we obtain 

(2.10) 

We have, therefore, the interpretation that the antisymmetric part of W is the 
bivector spin velocity of rigid director frames. 

It also follows as a consequence of equations (2.8) and (2.10) that for rigid 
directors = 0, and that w$i~;k is the gradient of the director spin bivector. 
We recall from equation (2.6) that the symmetric part of W is a measure of relative 
changes in the lengths of, and the angles between, the directors. 

Support for these results is found in several previous works. Grad (1952), from 
energy considerations, obtains the result that, for rigid particles, couple stress 
corresponds to bivector spin gradients. Dahler (1965) obtains this result using 
a statistical mechanical approach. Mindlin (1964) gives an excellent physical 
description of the twenty-seven components of orientation strain in a solid 
with microstructure from n slightly different point of view. 

Since we have restricted our analysis to a rigid microstructure, we are only 
concerned with the twelve components represented by wmnl and lffmml;k. 

Qi = +,iik Wjkl, Vjkl = r q i k  Qi = a. 3k’ 

2.3. Balance equations 

We record the balance equations for mass, linear momentum and total angular 
momentum when the microstructure is non-deforming (see, for example, Toupin 
1962, 1964; Dahler & Scriven 1963; Condiff & Dahler 1964; Mindlin 1964; 
Eringen 1964), 

(2.11) 

where p is the mass density, ti? and ,~i,ii are thc contravariant components of the 
Cauchy stress t and the couple stress p. respectively, 1 is the body couple, and u is 
the spin momentum density. 

I p + p+ = 0,  

t4i + p f i  = p?F, 
pz + p l i  - E i j k  tk j  = p&, 

3. Constitutive equations 

The rate of strain of position is measured by the velocity gradients vi; j, whereas 
the rate of strain of orientation for a rigid microstructure is measured by Vij, and 
14fcjl; or equivalently by the spin velocity bivector Qdj1 and its gradient !2fcj,;k. 
However, since we describe the couple stress by the second-order tensor ,df, we 
may replace 

It is convenient a t  this point to work in Cartesian tcnsor notation. We take as 
constitutive equations for a Cosserat fluid (i.e. a fluid with rigid directors) 

3.1. General constitutive relations for  a Cosserat Jluid 

by the equivalent vector Qi. 
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where we have used the principle of equipresence and where the comma before 
a subscript denotes partial differentiation. 

We examine ' u ~ ~ , ~ ~ ,  ilk, !2k,m to find objective forms of these arguments undcr 

(3.2) 
the rigid transformation 4 = Q i j ( t ) x , + W ,  

where Q u  QIk = 8 % ~  (3.3) 

Taking the time derivative of equation (3.2) yields 

0, = Qrjvj + A/crQTjxj + 
where &,j = L Q k j ,  A,, = 'I~LI = &,j Qjk' 

Consequently with the ube of equation (3.3) 

fit. , m = a G d z 2 m  = Qkj QnmV>, n + 4mm 

J ~ r n  = Q k j Q m n d j n  and %cm = QkjQnznup+&rnr 

where dk?,, = v~k ,m)and~kn l  = 'U[k,,n]. Wenow choose Q, = and, since each point 
of the fluid has associated with it the rigid rotation !2, we set A,, = emkTQr. The 
last set of eqnations then yield 

(3.4) 

(3.5) 

dkm = dk?nt 

Similarly 

Then 

(3.7) 
f % j  = f % ~ ( ~ k m + ~ k n %  + %kr %, nk,nt; da), 

fL%? = hi~(dkm+ohm+s,~~k,'~; 'h,,m; dm) .  

Results (3.4) and (3.5) were deduced earlier by Born (1920) from physical 
considerations. The results expressed by equations (3.7) were obtained by 
Dahler (1965) from statistical mechanics. Grad (1952) deduced the general form 
of the constitutive equations by considering entropy production. 

3.2. Explicit constitutive equations for transverse isotropy 

We restrict ourselves at this point to fluids with substructures exhibiting a single 
director vector whichwill be denoted by n ; i.e. the index u takes only the value 1, 
d, = n. Thus, for example, n could represent the orientation of the axis of 
revolution for a body of revolution. Furthermore, since we have assumed that 
the substructure does not deform under the influence of the surrounding fluid, 
we require n to be of constant length, i.e. 

nini = 19. (3.8) 

(3.9) 

We assume an incompressible fluid such that 

v ~ , ~  = dkk = 0. 

We postulate linear cause-effect relations, taking 

t i j  = +Bijkm(dLm+ Wkm +€mkr ' r )  + Ciikin ilk,rn, 

h 5  = D i ~ k m i l k , m ~ E a j k m ( d k m ~ o k m ~ E m k r ! 2 r ~ ~  

(3.10) 
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where A, B, C, D are phenomenological coefficients which are functions of tlie 
density p, thc temperature T and the single preferred direction n. 

Following Ericksen (1960a, b ) ,  we assume that thew relations are invariant 
under reflexions through all planes containing n and that n and - n are physically 
indistinguishable. These restrictions require t h a t  A: B, C and D be transversely 
isotropic tensors with respect to the direction n. Any such tensor is expressible as 
a linear combination of out'er products of ni and Sij and the scalar coefficients 
reduce to functions of p,  T: and n2. In  t,he sequel we will consider n to be normal- 
ized since this entails no loss of generality. V'e emphasize, however, that the 
scalar Coefficients are dependent on density, temperature and some scalar 
rcprescntative of particle size. 

(3 .11)  
It follows that 

A ,  = Y"sij+Ylninj, 

and Bijkm = Y,&j ' km + ~3 ai, 8jm + Yds<nzJ jk  

+ 7 5  ni nj slm~ + 7 6  'ij nk nm f 77 'ik 

+ ~ R r ~ i n ,  'jm + ~gninrn s j k  + 
nm 

sin, ny n k  

yll"tnjnknm. (3.12) 

Similar expressions can be written for C, D and E with different scalar coefficients 
replacing yk  in equation (3.12). 

4 s  postulated by Grad (1952) and Dahlcr (1965) we assume that the presence 
of Qk,m in the traction stress equation and of ( w ~ ; ~ +  c~niirQr) in the couple stress 
equation represents higher-order effects. Ignoring higher-order effects and 
assuming p = 0 when VS2 = 0, we may write the explicit constitutive cqua- 
tions as: 

I 
tii = -pSij + ~ ~ ~ n ~ n ~  + Xcr,dij + 2a,djknkn, + 2a,dikn,nj 

+ S(5dkmnk72mn1Lgnj+ 2 c ( 6 ( w i j + E j i k n k ) +  2CL7(WikfEkdrQ7)nr,nj  

(3.1 3 a , b )  1 
I + P 5  Q I G ,  mnlinm Sij + B e  Qi , li "knj  + P 7  Qk ,j n k n i  

+PsQj,k"kn,+P~Qk,inkni+i?,,Sk,,nknmnznj. 

I f  t he  microstructure exhibits no preferred direct,ion, i.e. if it is spherical, then 
on setting nB = 0 we recover the constitutive equations for an isotropic fluid 
with microstructure. Not,e that  

2(wi j  + eiik Q,) = U A (ciirl v - 2S2)! (3.14) 

where U is tlie identity t'ensor. Equation (3.14) leads to the physical interpreta- 
tion that the antisymmetric part of the stress tensor arises as a consequence of 
the difference between fluid vorticity and spin. 

Finally, we emphasize thaf the conservation equations (2.11) were written for 
the special case of a non-deforming or rigid microstructure. This permits us to 
uTite the expression for the spin momentum as 

a = J . Q ,  (3.15) 
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where I is the mass momentum of inertia per unit mass, assumed to be a sym- 
metric second-order tensor. Moreover, for rigid particles 

I = SAI- IAM (3.16) 

gives the rate of change of the inertia tensor associated with co-ordinates fixed 
in a rotating fluid particle. 

A count gives as unknownsp, vi, Qi, ni, tij, pij, Iii or a total of thirty-four, while 
we have conservation of mass and momenta, traction and couple stress relations 
and equation (3.16) (relating moment of inertia to angular velocity) yielding 
a total of thirty-one equations. In order to have a determinate problem, three 
additional equations are required. These are provided by the expression 

n = S x n ,  (3.17) 

relating angular velocity to the orientation vector n. 

axis of revolution, equation (3.16) can be replaced by 
We point out that for bodies of revolution, if n describes the orientation of the 

Iij = ( Il - 12) ni nj + I2 Sij, (3.18) 

where Il and I2 are the principal moments of inertia. 
The reduction to a theory of negligible microstructure interaction (which may 

be interpreted, for example, as a dilute suspension) is accomplished by setting 
the flux of angular momentum equal to zero. We are therefore defining a Cosserat 
fluid with negligible substructure interaction as satisfying the requirement 
V S  = p. = 0. The requirement for non-negligible substructure interaction 
is VQ + 0 ,  p. + 0. 

4. Equations for rectilinear shearing motion 
In  this section we exhibit the complete system of equations governing the 

special case of rectilinear shearing motion. We choose a rectangular Cartesian 
co-ordinate system in which x1 is parallel to the direction of motion, x2 is parallel 
to the direction of the velocity gradient and the system is right-handed. 

A steady shearing motion is assumed in which there is no dependence on 
x1 and x3, 

and there is negligible substructure spin inertia, i.e. pni = 0. 

o f t  and p.: 
Using equations ( 3 . 1 3 ~ ~ )  and (4.1), we record the following typical components 
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(4.3) 

pi1 = [nin2(p5 f P 6  + P 8  + n2,P10)1 Q1, 2 + [P1 + Pan': + P s n i  + Plon?n2,1 %.?, 2 

+ [ P 5 n 2 n 3 + P ~ ~ n : n z n 3 1  Q3,2, 

pi2 = [Pz+Psnl+P7n21+Plon21n2,1Q1,2+ [n1n2(P4+-P7fP8fPlonl)l %,2 

+ Lnln3(P7 +PlOnl)1 
The remaining components of tij and pij may be similarly derived. Noting that 
the continuity equation is identically satisfied, we use equations (4.1), (4.2) and 
(4.3) to write the x,-components of the momentum equations (2.10) in the form 

a a 
ax, ax2 

---I, +- Lalnln2 + ( a 2 -  v1,2 + + nivl, 2 

+ (a4 - a7) n:w,, + a5n:n$vl, - 2a6 Q3 - 2a7$ Q, 
+2a8n~~3+2a7n1n3~1-2a8n2n,~2]  = 0, (4.4) 

+ n i n 2 ( P 4 + P 6 f P g + P i o n 2 , ) Q 2 , 2 + n i n , ( P g + P i o n l )  %,21 

+ (a,-a3-a,+a8)n,n3v,,2+4a~Ql+2(a7-a8) (ni+n;)Q, 

- ~(a7-a8)n,n3Q3-~(a7-a8)n,n2Q3 = pu,. (4.5) 

The remaining components of equations (2.10) have a similar structure. Note 
that equations (4.4) and (4.5) are consistent with assumption (4.1) only if n, = 0 
or if ni,j = = 0. Otherwise rectilinear shearing motion of the type 
specified by equation (4.1) cannot exist. 

5. Rectilinear shearing motion with VQ = 0 
When the mutual interactions of the fluid microstructure are negligible, the 

flux of spin velocity is small and we set Qi,j = ,uii = 0. We take this to represent 
the flow of a dilute suspension, since, if the concentration of suspended particles 
is low, the effect of particle interaction will be weak. As previously mentioned, 
dilute fluid suspensions have been examined by Jeffery (1922) and Ericksen 
(1960b). In  order to compare our results with theirs, we make the following 
additional assumptions: 

vi = (kx2,0,0), p , i  = ni,j = 0. (5-1) 

Thus, no mechanical pressure gradients are imposed, and the ni are completely 
independent of position. 

From (5.1) and (4.4) we see that the equations of linear momentum are 
identically satisfied. However, we have yet to satisfy the spin momentum 
equations (4.5). If we neglect spin of the particle about its axis of symmetry, 
i.e. we set 

an = Q .n = 0, ( 5 . 2 )  

we can then compare our results directly with Ericksen's (1960b) since his theory 
doesnot account for thespin component Qn. Now,fromequations (3.17) and (5 .2) ,  

I l A n  = Q. (5.3) 
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Using equations (5.1) and (5.3), equation (4.5) reduces to the form 
n.,ri3-n3ri, = an,n3, 

n3 n, - n, ri3 = bn, n3, 

n, i, - n2 ri, = c - (an: + h i ) ,  

809 

(5.4) 

where, for conciseness in notation, we have set 
- 2ka, , c =  k(a3 - a4 + a7 - a,) Ic( - a3 + a,+ a, - a,) a =  - , b = -  

4a6 + 2(a, - a,) 4a6+2(a7-a,) 4016 + 2(a7 - a,) * 
(5.5) 

We can describe the orientation of n in space by means of two angles. Let 
6 represent the angle from the x,-axis to the projection of n on the xl-x3 plane. 
Let $ be the angle from this same projection to n. Then 

n, = cos 6 cos $, n2 = sin $, n3 = sin 6 cos $. (5.6) 
Substituting (5.6) into (5.4) gives 

(5.7) I sin $ cos $ cos 6s  - sin 04 = a sin 6 cos 8 cos2 $, 

sin 8 sin $ cos $8 + cos 64 = c - (a  cos26 cos2$ + b sin2 9). 
Note that one of equations (5.7) is redundant since n satisfies equation (3.8). 
There is more than one possible solution of system (5.7). 

cos $8 = -bsinOsin$, 

Case 1 
One possible solution is given by 

sin6 = 0 ,  cos6 = 1. ( 5 . 8 )  

6 = 8 = 0, 5 4  = c-(acosZ$+bsin2$), (5.9) 

Then system (5.7) becomes 

i.e. n3 = 0,  and the substructure particles rotate in the x1--x2 plane with the 
motion given by (5.9). This result can be put into a simpler form in terms of the 
constant 

(5.10) a3 - a 4  

= 2a6+a,-a8' 
Then, 

which has as solutions 
4 = 5 @[I +y(cosz$-ssin2$)1, 

1- L cos 24, 

We now consider the two possibilities, y 2  3 1, y 2  < 1. 

( a )  y2 2 1 

From equation (5.11 b) we see that as the solution approaches steady state, 
t -+ 00, the orientation of the substructure particles tends towards the constant 

value given by y+cos2$+(y2-1)fsin2$ = 0. (5.12) 



t,, = - p + alnt + (a3 + a4 - a, - a,)n,n,k + asn,n3,k, 

t33 = -p, 

f,, = a,n,n, + (a, +a,) k + (a3 - as)n2,7c 

t,, = aln,n, + (01, - as) k + (a3 + a,)n;k 

+ (a,  + a7)n;k + asn2,n?jk, 

(5.15) 

(5.13) 
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As y becomes large, q5 approaches 45"; i.e. the vector n is aligned a t  an angle of 
45" to the streamlines. As y- f -  1,  the angle 4 approaches zero; i.e. the vector n 
becomes aligned parallel to the fluid streamlines. 

Ericksen (1960b) obtained the constant solution (5.12) with n3 = 0 and the 
particles oriented between 0" and 45" with the fluid streamlines. He also obtained 
an unstable solution, n, = n2 = 0,  n3 = k 1, which is not possible with our 
formulation. 

The steady-state stresses for this case are given by 

These results are similar in form to those found by Ericksen (1960b) except 
that the shear stress components in (5.13) are not equal. Thus, this theory exhibits 
not only the non-Newtonian effects predicted by Ericksen (viz. the Weissenberg 
effect, a decrease in apparent viscosity t12/k with increasing shear rate), but also 
the additional effect of a non-symmetric stress tensor. 

( b )  Y 2  < 1 
Consideration of equation (5.11 a) reveals that n varies periodically with time 

and is of the form obtained originally by Jeffery (1922). The angular acceleration 
a t  any instant is not zero, but the net angular acceleration over a period is zero. 
However, when y = 0, i.e. a3 = a4, 

$ = @t, y = 0 ,  (5.14) 

and the substructure particles rotate with constant angular velocity equal to 
one-half the shear rate. Thus, the spin velocity is nothing more than the fluid 
vorticity. This leads us to the same observation made by Ericksen (1960b), that 
y is a measure of the substructure particle eccentricity. When the eccentricity 
becomes zero, the substructure becomes isotropic, i.e. spherical, and the spin 
velocity at every point of the fluid becomes equal to the fluid vorticity. This 
constant angular velocity was obtained by Jeffery (1922) for a spheroidal particle 
and, hence, the case n3 = 0, y = 0 in this work corresponds to his result. However, 
for 0 < y2 < 1, we see from equation (5.11)1 that the present theory allows the 
substructure to have an angular acceleration at any instant with the net 
acceleration over the period of rotation equal t o  zero. 

Clearly the stresses for this case vary periodically with time. As suggested by 
Ericksen (1960b), one can obtain 'expected values' of stress by averaging over 
a period. Integrating equations (4.2) over the period yields for y = 0 

(5.15) 
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where a; and a$ are simply groups of physical constants. It is evident from (4.2) 
that if a, = 0 ,  i.e. the fluid is isotropic at  rest, the stresses (5.15) are indistinguish- 
able from the Navier-Stokes stresses except for the non-symmetry of tii (see 
Ericksen 1960 b). 

Case 2 

Another solution of the system ( 5 . 7 )  is possible for sin6 $: 0. Then 

4 = -cos6(acos2~+bs in2~) ,  6’= -6sinetan4. 

In  the phase plane 

(5.16) 

If we make the substitution y = tan$ on the right side of (5.16) and integrate, 

C*lsinel = Ibtan2$+al+, (5.17) we obtain 

where C* is a constant of integration. 
Examination of equation (5.17) reveals that the vector n describes a cone 

about the 2,-axis. The cone half angle measured in the x1-x2 plane is given by 
(5.17) evaluated at  8 = 0,  

4 Is=,, = k tan-l(a/b)*. (5.18) 

The cone half angle measured in the xl-x3 plane is given by (5.17) evaluated 

(5.19) 
at 4 = 0, el+o = sin-,( (aJ/C*2)*. 

This solution exhibits a type of motion found possible by Jeffery (1922) and by 
Ericksen (1960b). We conclude that the present theory when specialized to the 
case of negligible particle interaction yields results compatible with previous 
work on dilute suspensions. 

Finally, we note that, when the assumptions are made simultaneously that 
Q- = 0 and n, $: 0, it is necessary, in order for equations (5.4) or (5.7) to be self- 
consistent, to set c = 0 and hence a6 = 0. 

ae tan 4 dq5 
-= -  
b tan 8 a cos2 4 + b sin2 4 ’ 

6. Rectilinear shearing motion with VM =I= 0 
6.1. Introductory remarks 

In this section we will consider the problem of rectilinear shearing motion for 
a fluid in which the mutual interactions of the substructure are no longer 
negligible. The case of fluid suspensions will be used as an example to discuss 
some of the non-Newtonian effects observed experimentally. In  the case of blood 
flow these non-Newtonian effects are attributed to the presence of red cells in 
suspension. The red cells are biconcave disks and are bodies of revolution whose 
largest dimension is about 8.5,um. The blood vessel diameters vary from 2.5 ern to 
8pm. The theory presented would apply only where the fluid passage is much 
larger than the largest dimension of the suspended particles. When particle size 
is of the same order of magnitude as the fluid passage, the deformation of sus- 
pended particles will become important and the present continuum approach 
may be invalid. 
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The more obvious non-Newtonian effects observed experimentally by blood 
rheologists are (Haynes 1961): 

(1 )  The ‘apparent viscosity’ defined by t12/vl,2 decreases with increasing 
shear rate v, ,~.  

(2) The size of suspended particles as compared with a characteristic length 
(fluid passage size) of a specific problem affects the apparent viscosity. For 
a given particle size, decreasing passage size decreases apparent viscosity. 

(3) Apparent viscosity increases with increasing volume concentration of 
suspended particles. 

(4) In  Poiseuille flow, an axial accumulation of suspended particles is observed 
and a marginal zone near the walls is observed which is deficient in suspended 
particles. This is attributed by Haynes (1961) to a transverse ‘Magnus force 
arising from particle rotation in a variable shear field.’ This so-called Magnus 
force has not been measured but has been proposed to explain the particle 
concentration gradients. 

Kinematical results for suspensions might also be expected to depend on the 
deviation of the suspended particles from the spherical shape. Indeed, the theo- 
retical results obtained in the previous section and by Ericksen (1960b) for dilute 
suspensions indicate that this is the case. We would also expect this effect to be 
present in the non-dilute case. As noted in $5, the dilute theory accounts for 
variation of apparent viscosity with shear rate and for variation in particle shape. 
However, a more refined theory is required to explain other non-Newtonian 
phenomena especially for particle concentrations such as those encountered in 
blood flow (40 % by volume). 

In  order to exhibit some of the effects of concentration on the flow kinematics 
without resorting to numerical techniques, we restrict ourselves to the case 

n{ = ( n , / ( x 2 ,  t ) ,  n2(x27 t ) ,  O ) ,  = ( O ,  O>  Q3(x2))*  (6.1) 

This example was previously considered by Condiff & Dahler (1964) for the 
special case of an isotropic microstructure, i.e. n, = 0, using the equations 
developed by Dahler (1965) from statistical mechanical considerations. 

6.2. Governing equations 

The equations of motion (4.4) and (4.5)) under the assumptions of equation (6.1), 
take the form 

a a 
ax, ax, - - p  + -“CClnl n2 f (a2 ‘ l ,2  + (a3 + ngv1,2 

+ (a4-a7)n~v1,2+a5n:n~vl,2- 2a6Q3- 2a7n:Q,+2a,niQ3] = 0, 
a 
- [ - p  + alni + (a3 + a4- a, - as)n,n2v,, 
ax2 



A theory of transversely isotropic fluids 

Two types of solution are possible for system (6 .2) .  They are: 
(a) Solution of the first type: 

v1,2 = k. Q3 = 4 = 0, 

813 

n, = cos 4, n2 = sin 4, n3 = 0, 

295 = cos-1 l/y, y2 2 1. 

In this case, there is no motion of the substructure particles and the preferred 
direction n is oriented between 0" and 45" with the fluid streamlines depending 
on the value of the physical constant y defined in (5.10). This is the same solution 
as for the dilute suspension case 1 (a) of 6 5.  

(b)  Solution of the second type: 
Assume that 

Q3 = 4 =k 0. (6.4) 

We must then solve the full set of equations (6 .2)  which is the non-dilute counter- 
part of case 1 ( b )  of § 5. The particles are rotating with constant angular velocity 
03(s,). Equations (6 .2)  become more tractable when averaged over a particle 
period T. Hence, we define 

T 

3 = 's F(x,,t)dt. (6.5) T o  

Stipulating that p , ,  = 0, we integrate the first three equations of system (6 .2)  
with respect to x2 and obtain 

where A and B are constants of integration. Note that for a Newtonian fluid 

p = p,, = const. 
From (6.6, a) 

p = PO f nz + (a3 + a4- '%- @'l n2 vl, 2 

+ dgnlniv,, 2 - 2(a7 f as) ( 6-81 

We can interpret (p -po)  in (6 .8)  as a 'transverse Magnus force' which we 
denote by p M .  Now 
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We apply the definition (6.5) to equations (6.6),, (6.6), and (6.9) to obtain 

S. J .  Allen and C. N .  DeSilva 

where el = a3+a4-a7-a8, e2 = a7+a,. (6.11) 

Equations (6.10a) and (6.lOb) govern themotionof the fluid while (6 .10~)  gives 
the expression for the gradient in the x2 direction of the Magnus force averaged 
over a particle period. In  a similar manner we can obtain the ‘expected’ traction 
and couple stresses corresponding to (5.15). For example, the average couple 
stresses from (4.3) are: 

(6.12) i 
pl, = FZ2 = pUQ3 = p12 = jZZl = pula = p31 = 0, 

F23 = ( P 3  + 6 P 8 )  ‘3.29 

F 3 2  = ( P 2  + 4 P 6 )  Q3, 2‘ 

Henceforth we restrict attention to the equations of motion ( 6 . 1 0 ~ ~ )  and 
(6.10b). Wenow consider the rectilinear shearing motion as representing the flow 
between plates parallel to the xl-x3 plane at  a distance h apart with the lower 
plate fixed at  x2 = 0. The upper plate at x2 = h moves with constant velocity V .  
Setting 

y = x2/h, u = v,/v,  f =  Q3h/V (0 < y 6 1,) (6.13) 

then equations (6.10a and (6.lOb) become 

u‘ = Ylf+k17  f f ’ - ? 2 ( f f 2 / f ) + Y 3 f f Y 4  = ‘ 9  (6.14a, b )  

where the prime indicates differentiation with respect to y, and we have elimi- 
nated v , , ~  from (6.10b) and defined new constants: 

and Ic, is a constant of integration. 
As boundary conditions we take 

u(0 , t )  = 0, u(1,t) = 1; f ( 0 , t )  = 0, f(1,t) = 0. (6.16) 

The boundary conditions on f, the dimensionless angular velocity, are still 
subject to investigation. Experimental work in the area of fluid suspensions with 
preferred directions indicates that conditions (6.16) are physically reasonable 
(Haynes 1961). 

It is possible to make some deductions concerning the physical constants in 
(6.14). For the isotropic substructure (spherical particles) of Condiff & Dahler 
(1964), the second term of (6.14b) vanishes. Thus, departure of the substructure 
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particles from the spherical is expressed by the constant y2  which is proportional 
to the particle eccentricity, 

yz = m,e, (6.17) 

where m, is a constant and e represents the cross-sectional eccentricity of an 
oblate or prolate spheroid. Hence, when e = 0 ,  the substructure is spherical and 
equations (6.14) reduce to the same form as those given by Condiff & Dahler for 
fluids with spherical microstructure. 

Both constants y3 and y4 of (6.14) are proportional to h2/L2 where L is some 
length. If we take L as the largest particle dimension, then as L-+ 0, i.e. the fluid 
has no substructure, we obtain from (6.14) 

= - 4v1.2, w1,z = m2, 

recovering the classical simple shear result that the spin is simply the fluid 
vorticity and the velocity gradient is a constant. 

The constant y, is a measure of the average distance between substructure 
particles. We arrive at this interpretation by the following: As yl+O, i.e. the 
distance between particles becomes very small, from (6.15)) y3  and y4 approach 
zero also. Then the only solution which will satisfy (6.14) and boundary 
conditions (6.16) is 

which is physically reasonable since the particles are closely packed when y1 + 0. 
Hence ylis related to the concentration of the suspension. Using equation (6.2 a)  
in the form y c l d  = f ', it  is evident that as y1 becomes large, i.e. the distance 
between particles becomes large, f' -+ 0, which is, as stated earlier, the condition 
for negligible interaction of microstructure particles. More exact interpretation 
of the physical constants requires correlation of experimental data and a com- 
plete set of numerical solutions of (6.14) for a range of phenomenological coeffi- 
cient values. Solution of (6.14) and (6.16) not involving assumptions of small 
physical constants would require an extensive numerical programme. However, 
information can be obtained from a geometrical examination of these equations. 

UI = k 1, f = 0, 

6.3. General geometrical analysis 

We now attempt to analyse the system (6.14)) (6.16) from a geometrical point of 
view. The starting point of this analysis is the first integral of (6.146) with respect 
to y ,  which yields 

(6.18) 

where k2 is a constant of integration. Substituting (6.18) into (6.14b) gives 

(6.19) 

If we evaluate (6.18) and (6.19) at y = 0 and y = 1, six discrete cases become 
evident and are treated individually below. 
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Case (1): y, > $, y2 =l= 1 

From (6.18) and (6.19), 
f ‘ (0)  = f’(1) = 0, f ” ( 0 )  =f”(l)  = ___ Y4 

2y2-1’  
(6.20) 

Thus, the function f and its first derivative are zero at both ends of the interval 
and its second derivative has the same constant value at each end. Thenf’ must 
have an odd number of zeros in (0 , l ) .  

b=-  2y4 = 2f”(O) = 2f”(l) .  Y3 . a = __ (6.21) 
Set 

H ( f )  = f ’ 2 ,  
Y 2 - 1 ’  2Y2- 1 

Then (6.18) becomes 
1 ,  

H(f) = k,f2ya+af2+bf. (6.22) 

We set H ( f )  = 0 and f = 0 is a solution. The reduced equation becomes 

k,  f 2yz-1 + af + b = 0. (6.23) 

We note that, when b > 0, f ’’ > 0 and f must have a positive maximum in (0, I) .  
When b < 0, f ” < 0 and f must have a negative minimum in (0,l) .  

We assume H ( f )  continuous and assume it vanishes for some value off which 
we denote byf,. From (6.22), H (  f )  vanishes for f = 0. Now H’( f )  is non-vanishing 
a t  f = 0 and we assume this to be the case a t  f = f o .  Then the integral curves f (y) 
of (6.18) have well-known properties (see, for example, Synge & Griffith 1959). 
The most important of these properties for our application are (a)  the integral 
curves are periodic functions between f = 0 and f = f,; and (b)  they are sym- 
metric with respect to their normals a t  points of contact with the bounding lines 
f = 0 and f = f o .  

If anf, does not exist for whichf’(y) = 0 in (0, l), then f(y) cannot satisfy the 
boundary conditions at both ends of the interval. Hence, when a solution exists, 
it is periodic between f = 0 and f = fo and we limit ourselves to the case of one 
complete period in the interval [0,1]. 

When y, is a positive integer or half integer, it  is possible to use the theory of 
algebraic equations (see, for example, Burnside & Panton 1960) to impose 
limitations on the signs of the coefficients a, b, k,. As an example, when y2 is 
a positive integer greater than unity, 27,- 1 = a, a positive odd integer with 
a 3 3. Then equation (6.23) becomes 

k, fa+af+b = 0. (6.24) 

Equation (6.24) must have an odd number of zeros since a is odd. But imaginary 
roots occur in conjugate pairs; hence there will be an odd number of real roots. 
We can apply Descartes’s rule of signs to determine the maximum possible 
number of real positive and negative roots. It is thus necessary to examine (6.24) 
for all possible signs of the coefficients. 

If k,, a, b are all greater than zero, there are no positive roots and at most one 
negative real root. The curve of H ( f )  as a function off has the general shape 
shown in figure 1. Thus f(y) can be periodic between f = 0 andf = - f o  (figure 2). 
But this is impossible because we have taken b > 0 and b = 2f”(O) and f must 
have a positive maximum. Proceeding in this manner, we find that, when y2 is 
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a positive integer, only two combinations of coefficient signs are impossible: 
( 1 )  k, > 0, a > 0, b > 0 and ( 2 )  E ,  > 0, a > 0, b < 0. When y, is a positive half 
integer, the following two combinations are impossible: (1) k, > 0, a > 0, b > 0 
and ( 2 )  k, < 0, a > 0, z1 < 0. 

FIGURE 1. The function H ( f ) .  

------ 

FIGURE 2 .  The function f(y). 

When y2 is a positive integer or half integer, it is sometimes possible to 
determine superior and inferior limits of fo in terms of the physical constants. As 
an example, let 2y,- 1 be an odd positive integer and k, < 0, a < 0, b > 0. 
A solution is possible for this case withf,, > 0. Prom Burnside & Panton (1960) 

fn< 1+lbl/[Ia1+1k,lI 

whichever is smaller. Since we know nothing about the magnitude of the constant 
of integration k,, the best estimates we can get are 

and f o  ’ l / ( I 4  + 111 or f o  > l/(Ik,/bl+ 11, 

0 < fo < 1, k,+co. 1 
(6.25) 

Fluid Mech. 24 52 
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Case (2): 0 < y, < + 
For this case, f remains a periodic function between f = 0 and f = 2 fo when 

a solution exists. However, no relation exists between f "(O),f"( 1) and the physical 
constants represented by b. There is thus no way of ascertaining whether or not 
restrictions must be placed on the signs of the coefficients k,, a,  b. 

Case (3): yz = 1 

I n  this case, equation (6.14 b )  becomes 

f" - f '"f+ Y3f+ 7 4  = 0. (6.26) 

The above equation can be integrated once but the result is not subject to 
geometrical analysis and will require numerical solution. It will not be considered 
further. 

Case (4): y2 = 8 
Equation (6.14 b )  becomes 

f"  - +f'Z/f + y3f+ y* = 0. 

The remarks made in Case (3) apply here also. 

(6.27) 

Case ( 5 ) :  y, = 0 

microstructure. 
As stated earlier, yz = 0 represents the flow of a fluid with isotropic (spherical) 

Case (6): y, < 0 

From equation (6.18) 
f ' Z ( O )  = f '2( 1)  = lim [k,/f 12yal:'. (6.28) 

f+a 

Either k, = 0 or f'z(0) = f'2(1)-+m. We reject the second possibility since it 
means that the couple stress becomes unbounded at the fluid boundaries, which 
is not physically plausible. 

Then, if k, = 0, equation (6.18) becomes 

(6.29) 

A geometrical analysis similar to that of case ( 1 )  shows that f is periodic between 

(6.30) 

However, equation (6.29) is directly integrable. The periodic solution is given by 

(6.31) 
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in which a = y3/(y2- 1) < 0. Applying the boundary conditions on f yields 

( -a)* k3 = $ 7 ~  2nn (n = integer) ; ( - a)+ = 2rn. (6.32) 

sin [ i 27rnfy + 1) + $z]. f = - _ - _  (6.33) 
b b  

Thus 

Note the special form required of the physical constants by equation (6.32). 

we obtain 

where k, = 1 + ylfo andfo is given by (6.30). 

a a  

We can alsointegrate equation (6.14 a ) ,  and, applying the boundary conditions, 

(6.34) u = - Y 1 ~ f 0 ~ - ~ ~ - ~ ~ ~ ~ ~ ~ - ~ ~ ~ ~ Y + ~ ~ ~ l + f o Y ~ + ~ , Y ,  

6.4. Xpecial case, y2 = 1& 

Equation (6.18) has a solution in familiar form for the case when y 2  = l*: 

f ' 2  = k2f2+2y3f2+y4f. (6.35) 

Assume k2 ' 0, Y3 < 07 7 4  > 0- (6.36) 

Thenff2 = 0 has two positive real roots given by 

(6.37) 

and f = 0 is also a root. We arrange the roots so that rl > r2 > r3. Then f is 
periodic between r2 and r3. Let 

f = r2(2, ~2 = r2/r1,  p* = (k2r1)4/2. (6.38) 

Then 5' = p*[( 1 - t2) ( 1  - K2c2) ]$ .  (6.39) 

Now let = P*Y, (6.40) 

and (6.39) becomes dc/dz = [( 1 - c2) (1 - K2c2)]g.  (6.41) 

The solution is 5 =  sn(Z+k,), (6.42) 

where sn denotes the Jacobian elliptic function. Then, using equations (6.40), 

(6.381, f = r2sn2&(k,r,)fty+k4), (6.43) 

where k, is a constant of integration. Applying the boundary conditions yields 

k, = 0, $(k,r,)* = 2K,  (6.44) 

for the lowest frequency of f(y), where 

(6.45) 

Making the same change of variables as before, 

$k2T1 = P(l77 2 7  K )  9 (6.46) 

where F(&r, K )  is the complete elliptic integral of the f i s t  kind. Equation (6.46) 
determines the constant k,. For example, when y3 = 2.0, y, = 1.0, k, is approxi- 

(6.47) 
mately 2-3 and f r 0*3sn22Ky; 

i.e. f has an amplitude of approximately 0.3. 
52-2 
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6.5. Summary 

this section we have examined rectilinear shearing motion of fluids with 
mutually interacting microstructure particles which have a single preferred 
direction denoted by n. This type of fluid can be interpreted as a concentrated 
flnid suspension. 

For the special case when n3 = 0, that is, the particle preferred direction lies in 
the xl-x, plane, the governing equations are (6.6). These equations are not 
amcnable to analytical methods. However, when they are integrated over a 
particle period, T = 2n/f13, a system of two coupled, non-linear, ordinary differ- 
ential equations in the linear and spin velocity results. This system, (G.14)) is 
found to contain the effect of average distance between particles (yJ,  particle 
deviation from spherical (y,), and the ratio of some length characteristic of the 
physical problem to the maximum particle dimension (ys and y4). The exact 
equations for the stresses given by (4.2) and (4.3) exhibit the non-Newtonian 
phenomena discussed in 5 5. 

f 

fo 

0 
1 .o 

FIGURE 3. The solutionf(y) of equation (6.14). 

The equations of motion (6.14) are treated from a geometrical standpoint, 
using as boundary conditions the vanishing of the linear and spin velocity at  
a fluid boundary. It was found that the first derivative of spin velocity also 
vanishes a t  fluid boundaries and that, if a solution exists, it  is a periodic function 
varying between the limits f = 0 and f = f o  where f '  = 0 when f = f o .  Moreover, 
the integral curves f f y )  are symmetric about perpendiculars to the bounding 
lines f = 0, f = f , ,  at the point of contact (figure 3). 

Experimentalists in fluid suspensions have postulated the existence of a 
' Magnus force ' to explain the axial accumulation of suspended particles and t'he 
marginal zone near fluid boundaries which is free of particles. It is our belief that 
this observed phenomenon is explained from a continuum standpoint by (1)  the 
presence of a pressure gradient in the x,-direction resulting from the present 
theory, which can be interpreted as the Magnus force, and (2) the shape of the 
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general dimensionless spin velocity curve in figure 3. This curve, for which f '  = 0 
in the neighbourhood of fluid boundaries, strongly suggests a core of rotating 
particles and a zone near the walls which is free of particles. Some support for this 
contention is given by the fact that this axial accumulation effect is not observed 
for spherical particles. In  the present theory, when ni = 0, then aplax, = 0 and 
the derivative of the spin velocity does not vanish at fluid boundaries. 

This research was supported in part by the National Science Foundation under 
Research Grant NSF-GK 99. 
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